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ABSTRACT
With the advent of improved experimental data on absolute total cross
sections Q(v) for atom-atom collisions and their velocity dependence, on
the glory undulations and the transition to high-velocity behavior, it
is timely to reconsider the problem of inversion of such data to yield
information on the interatomic potential. In the absence of additional
data in the form of differential cross sections there is a limit to thé
amount of information available from Q(v) even when observations of good
accuracy (e.g., + 0.25%) are in hand over an extended energy range (e.g.,
from "thermal" energies upward by a factor of = 103 in relative kimgtic
energy). A number of commonly used procedures for data inversion are no
longer adequate to deal optimally with the high quality experimental
results now becoming available. The present paper attempts to develop

improved methods for data utilization, which take full advantage of the

accuracy of the experimental Q(v) measurements.
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I. INTRODUCTION

. It was recognized in 1934 by Massey and Mohrl that total cross sectious
;or the elastic scattering of atoms by atoms could yield information on

Fhe interatomic forces, particularly the long-range part of  the inter-
action potential. At about the same time the experimental (beam) techniques
for making such measurements (as originated by Born,2a Bielz2b and Knauer
gnd Stern2c in Germany during the previous decade) were brought to fruition
quantitatively by Mais, Rosin and Rabi3 in the U.S.A., by Sasaki, Nishibori,
Kodera and co-workers4 in Japan and by Fraser and BroadwayS in England.

In 1935 the status of the subject as a '"mew kinetic theory of gases' was;
?stablished.in a summary by Rabi,6a which complemented an overall review.
on molecular beam scattering by Guillemin.6b In 1936 Massey and Bucking-
ljlam7 showed how existing total cross section data for alkali-rare gas
systems could be utilized to ascertain the magnitude of the long-range,
@ondon'dispersion ”C6 constant," i.e., the coefficient of the asymptotie
?ttractiVe potential V(rt)’v—CS/rS , where for S-state atoms s = 6. Thesé
?xperimentally-derived coefficients compared well with theoretical estimates
pased on the Slater-Kirkwood-Hellmann (SKH) approximatidns,

: A rather small number of experimental studies on total cross sectiens
were carried out over the hext two decades, however. One of the more
gxtensive of these was a series of measurements (and theoretical cor-
relations) of total cross sections for the scattering of numerous atom-
atom and atom-molecule systems, reported in 1959.8 All of the experiments
tp to this time had involved the scattering of thermal (Maxwellian) beams

by thermal "target' gases, so that the resulting cross sections were all

heavily velocity-averaged. However, the interesting possibility of -

verification of the asymptotic interatomic force law, i.e., determination



of the inverse power s 1in the long-range potential, from the velocity-
dependence of the cross section had been known since the appearance of

the original Massey-Mohr (MM) equation,l which can be written in the form

Qlv) = ’ﬂ,m(s) (Cs/%\ry—: (1)

Here the constant of proportionality /f%n(s) is a known, slowly-varying
function of s , and v 1is the relative velocity.

In 1960 the first experimental study of the velocity-dependence of
the total cross section was reported, by Pauly,9 for the K-N, system.

Here s was found to be 6 (within an uncertainty of about 10%), con-
firming the theoretical expectation, thus indirectly establishing con-
fidence in the procedure for determining C6 values from "absolute'" values
of thermally-averaged total elastic scattering cross sections.

Three sources of doubt remained, however, in the resulting potential
constants C6' One involved the possibility of systematic experimental
errors in the cross sections. This suggested itself from the fact that
many of the experimentally-derived C6 constants were significantly larger
than theoretically estimated (SKH) values, although ratios of C6 values
were in excellent agreement with theory.lo The source of this error11
was determined and previous experimental results corrected as required.lla
The revised C6 constants accorded well with SKH-approximated values, and
even better with the more rigorous perturbation-theory results of Dalgarno
and co-workers.12

Another source of doubt was the validity of the MM approximation in

general, and in particular the magnitude of the constant T%n(s) in Eq. (1).

. -6 - , .
Even on the assumption of a pure r potential, several different approxi-



mation formulas had been derived in the literature,l3 each hgvingvemplmyed
somewhat different assumptions. All of these yielded the same functiomal
form of the velocity dependence as the MM equation, but slightly different
coefficients p(s). Table 1 lists the values of p(6) thus obtained. Neot
in¢luded are results of three other approximate treatments,14 based on

tﬁe application of the uncertainty principle, which lead to the same MM

form but whose .p values are inherently less accurate.

"Table 1. Values of p(6) according to different approximations

Massqy-Mohr1 Firsov13a Schiff13b Landau-Lifshitz13c

p(6): 7.547 8.037 8.083 8.083
On the basis of a comparison with sample exact calculations (for a pure
repulsive r—lz -power potential) it was concluded13d that the Schiff- 1}

Landau-Lifshitz (SLL) coefficient p was to be preferred over

SLL Py
However, the entire range of p(6) values of Table 1 is only 7.1%, so that
in any case the uncertainty in the derived C6 from a given Q 1is confined
to a span of ca. 18%. |

A third source of doubt was the possible influence of the next higher-
order terms in the long-range potential, e.g., the r-7 retardation term
and/or the r-8 dipole-quadrupole contribution. A perturbation-like treat-
ment of these effects on the total cross section has been carried out,?“5
which indicated that the more important effect (at '"thermal" conditions)
was due the r-8 term, the incremental cross section being approximately
%T?B, where B = Cq/Cy . Recent theoretical calculations of B by

Davison,16 though significantly larger than values from the older litera-

ture, have led to the conclusion16 that the r_8 term makes only a small



contribution to the cross section at thermal energies for the typical
systems investigated. Nevertheless, the presence of this extra contribution
to the cross section, which is to a first approximation velocity-independent,
could make itself known via a deviation from the v-z/5 form of Q(v)
(cf. Eq.(1)» This type of deviation was observed by Beck and Loesch17
for the K-Kr and K-Xe systems. The direction and magnitude of the effect
was in accord with that expected on the basis of Refs., 15a and 16. How-
ever the results cannot be considered to be definitive evidence for the
08 contribution, since any additive attractive contribution to the potential
over and above the asymptotic form V ~ -C6/r6 would introduce a quali-
tatively similar deviation from the V-2/5 velocity dependence. It is
therefore difficult to extract from Q(v) data definitive information on
such "correction terms' to the r-6 potential tail.

Schlier and co-workers18 have shown by means of calculations based
on a flexible model potential (termed "realistic') that the 6 , averaged
over the glory undulations, can differ significantly from the QSLL based
upon the C6 assumed for the model potential. This is presumably due to
the fact that the range of r probed by the Q measurements (over the
velocity range considered) extended inward to smaller separations than
those for which the potential could be well approximated by its asymptotic

form, i.e., in the region of ¥ near (Q/2ﬂ‘)l/2

, V(r) # -C6/r6

A clear experimental indication of this difficulty is seen from the
recent work of Pauly and associates.19 For the systems Na-, K—, and
Cs~Hg for which a full "Buck-inversion”20 of all scattering data has

19a,20b Buck et alo19a showed that even at

yielded the "true'" potentials,
their largest reduced separation = = r/rm = 2 , where [Vl /e % 0.015,

-8 , . e .
the C8 r  and higher terms constitute:.a significant contribution to the

15a



potential. Specifically, for Na-Hg, using the best theoretical estimate

for C 21 one calculates that the C r-6 term accounts for only slightly

6 6
., .20b . , Q
more than half the total potential at this separation (of 9.44).
. . . 22 .
. This result, if found to be representative, would call into
question the practical usefulness of the long-range perturbation expansion
. 23 .
in reciprocal powers of r . Certain and Bruch, reviewing the question
of the validity of the long-range expansion, indicate that the higher
multipole terms (i.e., C8’ Clo etc.) become important at about the same
r as the exponential overlap terms. They state that "it rarely makes
sense to include higher order multipole terms while neglecting overlap
terms'. One might say.that when the leading term does not 'suffice, the 'use-
fulness' of the 'series expansion is.doiibtful.. Nevertheless'one must be careful not
"throw out the baby with the bath water". At present, total cross sections
constitute the only 'direct" source of information about the C constants
and ‘have, on the whole, yielded values in fair accord with theory.
' 24
Croucher and Clark compare all available theoretical and experimental

(i.e., from thermal Q data) C, values for alkali atom interactions with

6
. . , . . 25
atoms and non-reactive diatomics; with a few notable exceptions the
results are within mutual uncertainty limits. Clearly the dominant term
in the total cross section is that due to the asymptotic C6 coefficient.
However, a proper inversion of Q(v) data is highly desirable. Attempts
. . \ . 2 .
in this direction by several workers 6 have not yet been put into practice.
Irrespective of this problem (the higher-order deviatioms from a
-6 ]
pure r -dependence in the range of r probed by thermal Q(v) measurements),
the influence of the potential well and the short-range repulsive force is
7a

. . . . 2
a separate and important question. It was pointed out in 1961 that

extrema in the velocity dependence of the cross section for atom-atom

to



scattering would thereby be expected. These "glory undulations'" could be

27c,28 s . . 29
‘understood.7c’ from semiclassical considerations, and the extrema

2
indexed unambiguously. 8 A Jeffreys-Born (JB) (high-energy) approximation

for the velocity-dependent maximum phase shift 4]m was derived27b’c

making it possible to express the index N of the glory extremum as a

linear function of -%— (valid in the high-velocity limit). Here v is
N
the velocity. of the Nth glory extremum, determined from a plot of

A =Q - 6 vs. 1/v (where 6 is:the local mean of Q, averaged over

/

the undulations). or of vQ5 2 [dr*(C6)apP] vs. 1/v (where (C is

the apparent Co value assuming a dominance of the r_6 term in V(r) and

6)app

Eq. 1. and a 17(6) from Table 1). The limiting form of ”Ym(v)27 suggested

that the slope of a plot of N—% vs. VN (say I) is proportional to the

product Erm

I =/24)\¢r, (2)
1A >

where- ay "is a constant which depends upon the functional form of V(r).
“The quantity ‘aj: was evaluated for several.realistic model-potentials:30
it ‘varied over the range 0.34 - 0.50 for the cases examined, and was
found to depend primarily on the reduced curvature, X , of the potential
minimum (being less sensitive to other features of potential functions).
‘Thus, on the assumption of a functional form or model potential, for which

a; was known, érm could be evaluated from the measured I or

aleir .

m



In an attempt to extract further information from the glory-velocities,
Bernstein and O'Brien carried out a higher-order expansion of 7m in
terms of reciprocal powers of velocity and of energy,30 assﬁming various
model potentials. Out: of this arose an improved procedire for utilizing
precise extrema data which involved a graph (designated31 a BOB plot) of

(where E_ = L V2) vhose intercept is the 1 of
2 N/’

3
(N-g)vN vs. 1/E N

N

Eq.(? and "limiting slope' §, - For the commonly used model potentials
2
it was found that the quantity & ro could be directly determined from

S essentially independent of ¥  (to be contrasted with the relation

L,
between &r_~ and I , via the a, of Eq.(2).

The BOB procedures were criticized by several workers, however, on
several counts. First, as recognized from the outset, itdid not take
advantage of data on the glory amplitudes, which contain information on
the potential.28 Second, the deduction30 that ay depended primarily
upon the curvature ¥ was empirical, based only on a fewusimple model
potentials. The failure of this correlation was pointed out by Dlren
and Schliér18a by the counterexample of a flexible, multiparameter,

potential for which ¥ could be varied independently of a The most

1 °
penetrating analysis was that of Mason, Munn 35_31.32 who showed the
origin of glory undulations by an optical analogy. They found that the
extrema-spacing (and thus al) is better-correlated with the (reduced)
"area" of the potential well than with K , so that to a fair approxi-

mation (i.e., within a range of + 20% for all model potentials tested,

including the pathological square-well):

T ocwfvzr)dr , -



where (¢ 1is the (usual) zero of the potential. Third, in the case of
the alkali-Hg systems, certain discrepancies have arisen. For Li-Hg the
potential derived from: Q(v) data and.a BOB-treatment by Rothe and Vene-
klasen33 (as extended by Olsons34a whose analysis took cognizance of some
angular distribution data34b) appears to violate the empirical "Similar
Potential Hypothesis'" of Stwalley,35 when compared with the Na-Hg and
K-Hg potentials. A still more damaging finding was that of Buck_gg_gl.l9b
- who compared the potential parameters of Na-Hg estimated from a BOB
analysis of ‘their Q(v) data with the "true values" (from a full "Buck-
inversion"), and found a discrepancy of some 20% in ézrm . They attri-
. buted thiss6 to a difference in the BOB expansion coefficients (for ;%“)
characterizing the actual V(r) for the alkali-Hg systems, and those for

the model potentials of Ref. 30. At this stage it therefore becomes
necessary to face the main question directly: given extensive data, of
-good (but -finite) accuracy, on glory extrema in the thermal energy (so-
called '"low-velocity'') range, i.e., Q(v) as discussed, how much in-
formation on the interatomic potential is available, i.e., how much can

be extracted from such data, and what is an optimal procedure to accomplish

this goal? The present paper addresses itself to this problem.



II. FORMAL RELATIONSHIPS
The total cross section Q(v) is assumed to be a sum of two components:
a smoothly varying Q(v), dependent primarily upon the long range potential

27,2
constant C6’ and AQg(v), an oscillatory term, causing the glory extrema: 7,28

Q(v) = Q(v) + A@;("> (4a)
whe're 6(\/) ~ QSLL (v) of Eg.(/) and

DQ (V) = 4n* Ly s (2’7»\"

ESNCEAT

w

_1T> (4b)
4 7/,

where, as usual v 1is the relative velocity, k =‘/kvﬁﬁ is the associated
wavenumber, Lg is the glory angular momentum, i.e., the value of the
orbital quantum number £ corresponding to 'Ym , the maximum phase shift,

i

and 4Zn is the second-derivative of ‘7% with respect to ¢ evaluated
t

Introducing the reduced variablesz7c’d

VMR AT
'ﬁj. = L}/«/zrm

where ro is, as usual, the position of the minimum of V(rz Eq. (4b) may
be rewritten:

¥ Y% A . | M rr
A4 (= () #h sin 2k, 7" - 31)

[— dz'fm-l l l‘f (5)
' ’ dﬁz ‘@
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Consider the following expansions?’o’:;"’38 based upon the high-velocity
limit:
m [ Ex* E*3 (6a)
_ B + BI -+ BZ. + e 6b
ﬁ = o * x 2 (6b)
g E E
2 ¥ ’
- A 7m = T + 8._‘ + & —+ e (6c)

A/;’- /3 Eﬁl E~)(2- E-¥3
d
where EX(EK) = E/e is the usual reduced energy (& being the depth

of the potential well).

are constants determined by

It was shown30a that a BO , and c

1’ 1
the reduced curvature of the potential and that Al’AZ""’Bl’BZ""’
Cl’CZ”°" can be taken as constants independent of the form of the

potential and of ¥, € and r ,at least within a certain class of
parameterized potentials. Under the (strong) assumption that they are

%
essentially "universal constants'", the unknown character of ‘?m 5 Bg 5

2 *, 2 , s
and [ﬁ ’Vlm/dB ] is completely specified by the values of ay, Bo’ and Cl'

The following expa&sion is more pertinent for the purpose of obtaining
AQ via Eq. (5) than the expansion of Bg and {gkq:/dﬁxjﬁj of Egs. (6b,c):

ol % ﬂ?]%: I

t
where g, = BOA%/L . As for the A's, B's, etc.,it will be seen below

that H),Hy,eee, are essentially independent of the form of the potential,
within the same class of parameterized potentials. Combining Eqs. (5),

(6a) and (7) leads to a simple expression for the glory contribution:
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(8a)

where

(p:i&rﬁf'—-’ﬁl: TE N @.+_A,L+/4_i}+.--)—_3:’;-r. (8b)

The probleém of evaluating a(v) of Eq: (4a)remains. Formally we may

@(v) = &SLL(V)"‘ S&(V) ) (9)

where SQ(V) is the "correction" for the higher order terms in the inverse
power expansion for V(r), which may be expected to be slowly-varying.
Fully aware of the caveats mentioned in Séc. I, one can attempt to approxi=
mate this correction assuming only the dipole-quadrupole contribution.
C , 15a -8 .
It has been shown previously that when the C8r term in the

potential begins to affect the cross section, its effect is to introduce

dn additive correction té Q , essentially velocity-independent, namely

. (%) o o
o) = £ = 3 oo,
Values of the 08/C6 ratio16 range typically from 2.7X2 for the He-He39

to 2822 for Cs-Cs, so the Cq contribution to Q should be fractionally

small, though not negligible (see, however, Ref. 25). As discussed in
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III. DETERMINATION OF THE EXPANSION COEFFICIENTS
Using the tabulated values of 7. a [ *1a2],  given
sing the tabulated values o Y Bg , an /7 /4B ;4% give
by O'Brien37 the values of the coefficients (AiBi’Ci’Hi) were determined
)
in the following way: the reference potential was taken to be of the
standard L.-J. (12,6) form, although for the purpose of comparison the
calculations were repeated for an Exp(&X,6) potential, with o = 13.772.
Using 20 tabulated points in the range 1< E@S 100, for each of
(6a), (6b), (6c) and (7) a weighted (assumed constant relative

error) forward curvilinear regression was carried out for the pertinent

%*
quantities (i.e., 7 B, etc.) with a

m’ g

l’Bo’ and 61 held fixed at

their theoretical known values. The regression was stopped when the

next term to be added was not significant at the 90% level (via the F-
test). The results are given in Table II. It was found that reproduction
fo full accuracy of ’7; was obtained by including terms to A4 in (6a),

i . 2 m* 2 l/l' . .
and of Bg/:[ d ’7m/dB lﬁj( using only the term H, in (7).

1

In terms of these truncated forms, Eq. (8) becomes
AQ, (v) = @, ) i") (l + HE€ -
g ¢ > sin ¢ (1la)

where

¢ = -3r 4+ 4érm(a,+é\,/_+/\€ A

178
Y v 3 +5‘_ff_> (11b)

E £r E? E¥

Isolating the velocity dependence and assuming Hl,Al,...A4 to be constants,

Eq. (4) becomes (in the limit ‘fQ(v)-*'o)i

Q=X v oy vE(i+ -G—Eﬂ') sin @ (128)



with
¢ =2 + LER _{:#_[A + €A, éfﬁ5+5“44>
“ v vE U E E* T ), (12b)
where c %g,
Y, - fJSLL(é)( 6/4:)
(13a)
_ %, (A4)
Y, = @ua) g, (46) .
Y3 = 4Q,é)’m /4
(13¢)
th: L}-éz‘r‘m /ﬁt
(134d)

and € are free parameters.

Thus, given C., g_, a;, r , and €, then ¥, ..., X; may be
calculated from Egs. (1l3), using pSLL(6) = 8.083 from Table 1, and the
total cross section as a function of velocity given by Egs. (12). Table
ITI shows a comparison of Q(v) calculated from Eq. (12) for a specified

L.-J. (12,6) potential with computed JWKB cross sections Q ,B(v).- The agree-

ment is exact within the accuracy of the QJWKB

(v).

Seyeral remarks regarding the use of Eq$. (12) are in order. Firstly,
it is necessary that Eqs. (4), together with (9) for S‘g 0, will
represent the actual cross sections over the energy range of interest,
i.e.,only the r-6 long-range term of the potential is significant.

Secondly, the use of Eq. (8) requires that the -expansions of Eqs. (6)

and (7) converge sufficiently rapidly over the energy range of interest.

14



15

3
(Note that the expansiouns are singular at E =0 .) The coefficients
Al""AA’ Hl were found to be independent of the form of the potential
only for a specific class of two-parameter potentials and there is no
theoretical reason to believe that they are "unique" or "universal" to
all realistic interatomic potentials. In the general case, the best

. . . LJ LJ R
values of Q(v) will be obtained using & and ro instead of the

- . LJ LJ .

true-wdlues E,rm, where ¢ and r =~ are the potential constants for
the L.-J. (12,6) potential which best fits the actual potential over

‘the region of r which most strongly affects the Q(v).
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a
Table III. Comparison of approximate Q(v) from Eq. (12) with QJWKB(V) calculation

v_(Km/sec) E* QJWKB(V) (Xz) Q (v) (ngl—
1.585 0.9159 1124 1121
1.63 0.9688 1145 1145
1.73 1.079 1114 1114
1.83 1.221 1017 1016
1.94 1.372 1021 1020
2.05 1.532 1050 1049
2.113 1.629 1031 1030
 3.548 4,590 805 805
5.012 9.159 681 681
10.59 40.91 551 552

% L.-J. (12,6) potential for which, in general, a; = 0.421559, g _= 0:186299.

Here the specific parameters of the model are € = 13.3 cpe’, r, = 4.92 X,

6 5

C, = Zérm = 3.7# x 107 cpe - X6 and /u= 9,69925 x 10_24 g [note:

6

1 cpe = 1 centipicoerg = 10-14 erg. )

Calculated from Eq. (12).
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IV. FITTING OF EXPERIMENTAL DATA
From Egs. (4);jﬂ8) and (9) it is possible to construct a hierarchy of
models for experimental total cross section data, which give successively
more information about certain potential parameters, but at the expense of
an increasing number of approximations concerning the form of the potential.
From Eq. (82 Q(v) goes through maxima. and minima when sin ¢ = + 1.
d27b,c

These extrema are usually indexe in the order they occur, i.e.,

N = 1 for the first maximum, N = 1.5 the first minimum, etc., It has been

shown”/27¢ that this requires (cf. Eq. (8b))
2
Th E E*

The firsttwo models to be presented are based upon Eq. (14) and the
"experimental' variable Y = (N - %)vN . The third model is based upon
Eq. (12).

A. Model I.
It is assumed the extrema indices N and extrema velocities Yy have

been determined experimentally. The model for the experiment is

2
\f' = T + f;‘ X -+ E%z X7+ ... , (15)
where X = E_l. A curvilinear forward regression of the experimental data
is to be performed, keeping all terms that are significant (at, e.g., the
90% level). In general, the number of terms required to fit Eq. (15) will

depend upon the experimental energy range.



Assuming that the expansion ’7;(Ew—l) of Eq. (6a) holds over the
experimental range so that I, Sl’ Sy .., are "experimental constants"

the following ansatz can be made:30b

I- .Uz,er,,,/ﬂff

(1l6a)
g“ = (2 e’—rm/-,fi’\> A, (165)
% =(z€f*’ o /R A, .
With no other assumptions, alérm can be determined from:
Q.€Ev, = IT%Q T . 2)

Under the additional assumption that A1 and A2 for the unknown potential

are the same as for the 'standard" potential (say, the L.-J.(12,6) form),

then
2. = TA S

€ = A'S, /AzS, ) (17b)

which are the BOB equations (Ref. 30b).

B. Model II

Suppose N and vy are experimentally determined as above. 1If,

in addition to the assumptions of Model I, it is further assumed that

Al""A4 are the same as those of the particular L.-J.(12,6) potential

19



with the same & and r , the model is

/ / I/
N=I+9S 2 + €S Z +€5Z +€52Z

(18)

where ZJ. = Aj /E_J‘ . Then the following ansatz can be made:
acEv,, = Ir_if—l' , @)
ézrm = Eig S: - (19)

If it is assumed that Al"'°A4 are known (''universal constants') it is
more efficient to use Model II than Model I, since the lower number of
free parameters and correct functionality of Eq. (18) leads to smaller
confidence intervals of the coefficients I, SI, and & . It should
be noted that Models I and II are the same for energies sufficiently
high that the last two terms in Eq. (18) can be neglected.

C. Model III

Suppose that Eqs,(.8) hold sufficiently well so that H and

l’

Al"'°A4 are constants over the experimental energy range, namely those

for a L.~-J.(l2,6) potential, and the only contribution to the non-

oscillatory cross section is Q Then the following model for Q(v)

SLL’

results:

QRv) = B’,v—;/;+ Y, \/’/z[l—f- e W, ) sin 6151

(20a)

where d): —%—’(‘E/i -+ Yq [V/,’f' €W2_+ ézb{/g'f'ézlﬂ/;f_)) (20b)
Vv
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where wo = Hl/E, and W;j = AJ/E1 for j =1,2,3,4 . If the assumptions

are valid, then

¥, = Psu®(C /4 )Z/S_ (21a)
Y, = (’—f"r»«)%jo F/e)™ (21b)
Y, = Yaev, /. (21c)
(- 4/t o

4e
By determining %&, X’, Xg, XZ and € from a nonlinear regression of

Eq. (21), estimates of C6, ay, T and g, may be obtained:

C, = A (&/PSE\SB))SA | (22a)

4, = ¥ €/8, (22b)

N = ;t‘ Y‘f /461 (22¢)
2 32—

y €™ YL/%L(WX?‘/Z) 4 : (22d)

Note that if there is a multiplicative bias in the apparent

Q(v), i.e., Q @) = (L +F) Qapp(v) for some constant <, then ithe

true
values of X1 and X; will be biased by exactly the same factor (L # ).

If a small component due to the Cy term contributes to Q(v), this

may be included in the model by modifying Eq. (20a) to
(V)= ¥ v Y v* eW. ) s cﬁ + Y.
Qv) = ¢ + 8, (l+ o) $An 5, (23)

where \(5 is the §8)(Q) of Eq. (10).
D. Remarks
It may be expected that the value of Model I will decrease as the

data extends into the low-velocity range, since the confidence intervals
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of the coefficients will become large. This reflects the deterioration
of the expansion of Eq. (6a).

While Model II extends the viable range of Eq. (6a) further into
the low-velocity region, this is done at the expense of assuming that
the potential 'resembles" the L.-J.(12,6) functional form. Furthermore,
the nonlinearity in & of Eq. (18) will introduce a bias in the con-
fidence intervals calculated by this model.

Model TII is the most powerful of the models in that C,. and g,

6
may also be determined (and perhaps C8); it uses the full set of
observed Q(v), and requires no prior graphical analysis. On the other
hand, the estimates are more sensitive to contributions from terms of
the type -Cn/rn for n>6, and the model is strongly nonlinear in several
parameters ( Xg, 32, €) , possibly leading to convergence problems in
the fitting procedure, and requiring fairly good initial estimates of
the parameters.

In any of the models, the use. of the tabulated values of Hl‘
and Al”"A4 for a L.-J.(12,6) potential is tantamount to fitting the
parameters dependent upon these quantities to a "standard" functional
form of potential. For example, the & obtained from a fit of Model II
will not be the best estimate of the actual well-depth of the potential,
but the €& which leads to the L.-J.(12,6) potential which best approxi-
mates the true potential. For this reason there may be differences for
potentials which cannot be well-represented by the 'standard" form.
Furthermore, unless the true potential is close to the standard form,
the values of €& and r will be "experiment-dependent”, in the sense
that the 'best" L.-J.(12,6) potential describing the total cross sections
will be different from the best for, say, the differential cross section,

as. found frequently in the literature. This is, howevey a defect of all

calculations involving a model potential form.
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V. Example Calculations

Three test cases were used to provide examples of the usefulness
of Models I and II. Case A is the set of 13 extrema data for the Na-Hg
system of Buck _gg_gi.lgb Cases B and C are hypothetical, representing
a L.-J. (12,6) potential with € = 8 cpe, r =4 Z, where + 1/2% and + 1%
normally distributed errors have been added, respectively to the.Q's.
Test calculations were carried out for this potential with no added error,
giving the expected results. A summary of the calculations appears in
Table IV. (Cases B and C were intended to mimic case A; for each of the
cases there were 13 data in the‘range 1< E* < 10. (All of the data ére
in the fairly low velocity range, where tpe results are expected go be
less precise.) It should be noted that the several estimates of a1651%1
obtained for case A are of significantly better precision than the value
obtained from the '"Buck-inverted" potential for this system.

Examples of the application of Method III are given in Table V.

1

Both cases D and E were L.-J. (12,6) potentials with & = 13.3 cpe and

[o} ]
r = 4.92 A, with 48 data in the range 1 < E' < 40, with * 1/2% (relative)

error in Q(v) added. For both cases D and E, C6 = 2€§-r$, and for case

2 . °2 o
(i.e., X; 2 2 A®)., From the results it is seen that, at

least for this example, Method III is indeed sensitive to the presence

' o
E, B=1A

of C8 (even when B is small).

Examination of the results (Tables IV and V) leads to the following
conclusions: (1) the error intervals in the fitted parametersudecrease
successively from Method I through III;- (2) a small amount of expe;}mgntal
error induces successively larger errors in ézrm and in € , when the
data are mainly in the low E* range; (3) the true values of the parameters
usually fall within the fitted error intervals.

Listings of FORTRAN IV programs which perform the fitting calculations

for Models I, II and III are given in Ref. 40.
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Table V. Example of the Use of Method 111’

CASE D CASE E
C
TRUE INITIAL d e d e
= C = 0
UANTITY VALUE  VALUE Cg= 0" Cg¥ O 820 S *
c.v. 0.25 - - 0.26  0.26 0.39 0.26
c6x10'5(cpe-26) 3,773 3.78 3.777  3.753  3.776  3.752
+.007 +.036  +.011  +.036
g .186299  .190 212 211 .213 212
° +.063  +.072  +.079  +.072
€ (cpe) 13.3 14.0 14.0 14.0 14.0 14.0
+1.0  +1.0 +1.5 +1.0
a, 421559  0.44 .435 435 .435 .435
: +.036  +.049  +.022  +.049
r (8) 4.92 4,7 4,5 4.5 4.5 4.5
" +.7 +.8 +.7 +.8
ale,rm(cpe-X) 27.585 28.9 27.62  27.62  27.62  27.63
' +.08 +.08 +.13 +.085
2 2
E°r (cpe -K) 870 921 888 889 889 889
" +35 +35 +52 +35
Cgx10™> (cpe-R°) 08 0 -« 3.845.6 - - 7.445.7

Fit performed with assumed constant relative error.
+ indicate 95% confidence interval halfwidths from fit,

Fit for C, # 0 was performed using C

8 = 0 parameters as initial values.

8
. . -8 .
Fit assuming no r term is present.
e . , -8 .
Fit assuming a r term is present.
The coefficient of variation of the fit in %.

- . 02
For case EJ s
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V1. Concluding Remarks

Total cross sections Q(v) for the scattering of (S-state) atoms41
in the low-velocity region42 contain information primarily on the long-
range tail of the interatomic ( ja-state) potential. However, it appears
that over the region of r. probed by the @ measurements the higher-
ordef terms in the inverse-power expansion of V(r) (i.e.,those beyond
the leading r_6 term) contribute significantly to the potential. Thus
it is not in general possible to extract from the smooth a(v) measure-
ments (via the SLL approximation of Eq. (1)) accurate C, values without

6
-8
taking cognizance of the C8r and higher terms. The effect of this
deviation from asymptotic r_6 dependence over the range of r affecting
the experiments is to yield a residual velocity dependence in the

"apparent'" C, calculated via Eq. (l) from the smoothed Q(v). Assuming

6
that, for values of r E;R(v); where R(v) = (6(v)/2¢f)1/2, V(r) can

.be well-approximated by V(r) ¥ —'C(,\"'6 (i+-/3r"‘) , and provided that
over this range B/r2 <L 1, the influence of the r"8 term is simply

to introduce a constant additive correction S(S)Q to the SLL-approxi-
mated smoothed cross section.

The glory extrema-velocities and amplitudes are-goverﬁed largely by
the characteristics of the potential well. The results show greatest
sensitivity to the "area of the well', which in turn is roughly pro-
portional to the product erm and is strongly affected by the curvature
¥ of the potential. The extrema-spacings (i.e., dN/d(l/vN), in a well-
defined limit) yield the quantity IZ«cal‘éirm with good accuracy. Tﬁe

primitive BOB analysis (intended to yield ezrm directly from the glory-

velocity data) suffers from the disadvantage that it is tied closely to
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the "similar potential" hypothesis, i.e., that the wells are all some-
what "similar'" in shape, and, moreover, are similar to those of several
commonly used '"realistic'" interatomic potential functions, for which

the expansion coefficients QAl, A etc.) are essentially invariant

27
("universal') constants.

In the present paper improved procedures are developed for the
analysis of Q(v) data. The use of the given values of the expansion
A

coefficients A 1’ 8 is, however, equivalent to fitting

1’ . e 45 1,

the data to the best 'model" potential (of one of the standard forms,
such as L.-J.(12,6), Exp(e<,6), etc.). Applying the methodology to
the data of Buck gg_gl.lgb on N(VN) for the well-characterized Na-Hg
system indicates that the resulting potential can reproduce the vy
data to within experimental accuracy (here 0.3%). Since the thus-
derived potential differs sdgnificantly from the best V(r) determined

by the Buck inversion procedure employing all scattering data (including
differential cross sections, rainbows, etc.), the total cross section
data simply do not contain the desired informatiﬁn. At the very least,
if both AQ(v) and 6<V) data can be reproduced within experimental

error by the present procedures, then the data have been essentially fully
exploited; the derived potential is by definition "indistinguishable"
from the true potential until further data (either extended energy range
or angular distributions) can be used to remove the ambiguity.

The literature on neutral atom-atom and atom-molecule scattering
from the viewpoint of intermolecular force determinations is extensive
and has been reviewed by Bernstein and Muckerman in 196743 and by Schlier

44

in 1969 '. In the Appendix is presented an annotated bibliography of

recent experimental papers which report total cross sections for systems
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involving only atoms and/or hydrogen molecules. The subject of dif-
ferential cross sections is beyond the scope of this paper but is
clearly an extremely important aspect of the general problem of the

experimental determination of interatomic potentials.
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APPENDIX
ANNOTATED BIBLIOGRAPHY ON TOTAL CROSS SECTIONS (Since Ref. 43)

(Systems involving only atoms with atoms or hydrogen molecules)
J. Politiek, J. Los, J. J. Schipper and A. P. Baede, Entropie 18, 82
(1967). K-He, Ne. High-velocity, transition region, Q(Vv).

G. E. Moore, S. Datz and F. Van der Valk, J. Chem. Phys. 46, 2012 (1967).

3
He - H,,D,; )

H. L. Kramer and P. R. LeBreton, J. Chem. Phys. 47, 3367 (1967). Na - Ar,

4He - He, H,. High-velocity, Q(v).
Kr. Glories, Q(v).

F. von Busch, H. J. Strunck and C. Schlier, Z. Physik 199, 518 (1967).
Na - Ar, Kr, Xe; K - Ar, Kr, Xe; Rb, Cs - Kr. Glories, transition
region, Q(Vv).

M. Hollstein and H. Pauly, Z. Physik 201, 10 (1967). Na - Xe; K - Ar,
Kr, Xe; Cs - Ar, Kr, Xe. High-velocity, transition region, Q(V).

‘M. A. Fluendy, R. M. Martin, E. E. Muschlitz, Jr. and D. R. Herschbach, J.
Chem. Phys. 46, 2172 (1967). H - He, Ne, Ar, Kr, Xe, H2.
Transition region, Q(V).

R. Duren and C. Schlier, J. Chem. Phys. 46, 4535 (1967). K - Ar. Glories,
Q).

Y. N. Belyaev and V. B. Leonas, Dokl. Akad. Nauk SSSR, 173, 306 (1967).
He -~ HZ’ D2. High~velocity, incomplete total cross sections.

R. K. Helbing, W. Gaide and H. Pauly, Z. Physik 208, 215 (1968).

He, H,, D, - Ne, Ar, Kr, Xe. Glories, Q(v).

2° 72

U. Buck and H. Pauly, Z. Physik 208, 390 (1968). Na - Kr, Xe. Glories,
Q(v).

F. von Busch and H. J. Strunck, Z. Physik 209, 474 (1968). Na, K - Ar;

Na, K, Cs - Kr. Thermal, relative Q's.



. Diren, G.~P. Raabe and C. Schlier, Z. Physik 214, 410 (1968). Li - Kr;
Na - Ar, Kr, Xe; K - Ar, Kr. Glories, Q(v).

- Cantini, M. Cavallini, M. G. Dondi and G. Scoles, Phys. Letters 274,
284 (1968). He, H

- He, H Thermal, absolute Q's.

2 2°
. Amdur and A. L. Smith, J. Chem. Phys. 48, 565 (1968). He - H2, 9
High-velocity, incomplete total cross sections.

- K. Helbing and E. W. Rothe, J. Chem. Phys. 48, 3945 (1968). 1Li - D2.
Glory, Q(v).

. W. Rothe and R. K. Helbing, J. Chem. Phys. 49, 4750 (1968). Li-Na, K,
Rb, Cs; Na - Cs. Glories, Q(v).

- R. Eckelt, B. Schimpke and K. Schiigerl, Z. Phys. Chem. 68, 266 (1969).
He, Ar - Ar. Thermal region, Q(v).

. J. Lassalle and K. Schigerl, Z. Phys. Chem. 68, 277 (1969). K - Ar.
Thermal region, Q(v).

- G. Dondi, G. Scoles, F. Torello and H. Pauly, J. Chem. Phys. 51, 392
(1969). He - He. Higher-order glories, Q(v).

. 0. Colgate, J. E. Jordan, I. Amdur and E. A, Mason, J. Chem. Phys. 51,

968 (1969). Ar - He, Ar, H High-velocity, incomplete total

9
cross sections.
. C. Stwalley, A. Niehaus and D. R. Herschbach, J. Chem. Phys. 51, 2287

(1969). H - He, Ne, Ar, Kr, Xe, H Transition region, Q(v).

9
- H. Winicur, E. L. Knuth and W. E. Rodgers, Entropie 30, 154 (1969).
Ar - Kr. Transition region, Q(v).
Politiek, J. J. Schipper and J. Los, Physica 49, 165 (1970). K - He,
Ne, Ar, Kr, Xe. High-velocity, transition region, Q(v).
- J. Malerich and R. J. Cross, Jr., J. Chem. Phys. 52, 386 (1970). Na -
Ar, Xe; K - Ne, Ar, Kr, Xe; Cs - Kr, Xe. High-velocity, transition

region, Q(v).

30
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. Neumann and H. Pauly, J. Chem. Phys. 52, 2548 (1970). Li, Na, K,{Rb,
Cs - Hg; Na - Cs. Glories, transition regiomn, Q(V).

. Baratz and R. P. Andres, J. Chem. Phys. 52, 6145 (1970). Ar - Ar.
Glories, Q(v).

. 0. Colgate and T. C. Imeson, J. Chem. Phys. 53, 1270 (1970). Cs - He,
Kr, Xe. Thermal region, unresolved glories, Q(v).

. T. McArdle and J. G. Skofronick, J. Chem. Phys. 53, 4403 (1970).

He - He. High-velocity region, Q(v).

. Kanes, H. Pauly and E. Vietzke, Z. f. Naturforschg. 26a, 689 (1971).
Li - Cs. Glories, Q(v).

. D. Lempert, S. J. Corrigan and J. F. Wilson, Chem. Phys. Letters 8, 67
(1971). He - Ar, Ne - Kr, Xe. Transition region, glories, Q(v).
. G. Beunewitz, H. Busse and H. D. Dohmann, Chem.»Phys. Letters 8, 235
(1971). He - He. Higher-order glories, Q(v).

. W. Bredewout, N. J. Bosman, A. G. Visser, J. Korving and C. J. Van den
Meijdenberg, Chem. Phys. Letters 11, 127 (1971). Ar - Kr.
Glories, Q(v).

. Buck, K. A. Kdhler and H. Pauly, Z. Physik 244, 180 (1971). Na - Hg.
Gleries, Q(v).

..P. Butz, R. Feltgen, H. Pauly, H. Vehmeyer and R. M. Yealland, Z.
Physik 247, 60 (1971). He, Ne, Ar, Kr, Xe - HD. Glories,
transition region, Q(v).

. P. Butz, R. Feltgen, H. Pauly and H. Vehmeyer, Z. Physik 247, 70 (1971).

HD - HD, D,; D,-HD, D

2° 72
. Gengenbach, J. Strunck and J. P. Toennies, J. Chem. Phys. 54, 1830

9t Transition region, Q(v).

(1971). He - H2. High-velocity, transition region, Q(v).
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. E. Oates and J. G. King, Phys. Rev. Letters 26, 735 (1971). He - He.

Low-velocity data, transition region, Q(v).

. Moerkerken, M. Prior and J. Reuss, Physica 50, 499 (1971). Ar - H2.

Anisotropy of Q at fixed v.

. Buck, M. Kick and H. Pauly, VII ICPEAC, 543 (1971). Na, K, Cs - Hg.

Glories, Q(v).

. C. Angel and R. A. Giles, VII ICPEAC, 555 (1971). K - Cs. Thermal Q.

. A. Phipps, J. E. Scott, Jr. and J. L. Shinn, VII ICPEAC, 559 (1971).

He - He, Ne, Ar, Kr, Xe; Ne - Ne, Ar, Kr, Xe; Ar - Ar, Kr, Xe;

Kr - Kr, Xe. Thermal, absolute Q's.

. Bassi, A. Schutte, G. Scoles and F. Tommasini, VII ICPEAC, 561 (1971).

H - Hg. Glories, Q(v).

. Nenner, VII ICPEAC, 564 (1971). Ar* - Ar, Kr, Xe. Glories, Q(v).

Cantini, M. G. Dondi, G. Scoles and F. Torello, VII ICPEAC, 648
(1971). He - He. Higher-order glories, Q(v).

- G. Bennewitz, H. Busse, H. D. Dohmann and W. Schrader, VII ICPEAC, 651

(1971). 4He - 4He, 3He; 3He - 3He. Higher-order glories, Q(v).

. Gengenbach, C. Hahn, J. P. Toennies and W. Welz, VII ICPEAC, 653 (1971

He - He, H2’ High-velocity, transition region, Q(v).

- V. Lilenfeld, N. C. Lang, E. K. Parks and J. L. Kinsey, VII ICPEAC,

656 (1971). He - D2. Transition region, Q(v).

. C. Moerkerken and J. Reuss, VII ICPEAC, 663 (1971). Ar, Xe - H2-

Anisotropy of Q at fixed v.

- Kusunoki, Bull. Chem. Soc. Japan 44, 2067 (1971). K - He, - Ne,

~Ar,-Kr, - Xe. Glories, Q(v).

- S. Grace and J. G. Skofronick, private communication (1972).

He - H2. Transition region, Q(v).
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